Crosscutting Concepts

Here is a list:

Patterns: Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.
Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.
Scale, proportion, and quantity: In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system’s structure or performance.
Systems and system models: Defining the system under study—specifying its boundaries and making explicit a model of that system—provides tools for understanding and testing ideas that are applicable throughout science and engineering.
Energy and matter: Flows, cycles, and conservation. Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems’ possibilities and limitations.
Structure and function: The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.
Stability and change: For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.

Structure and Function

Structure and Function

By now, you are likely familiar with this domain of the Next Generation Science Standards, the seven Crosscutting Concepts, ideas that bridge all the science content areas, from amoebae to supernovae.

Here is another list:

The Family Is All There Is
by Pattiann Rogers

“Think of those old, enduring connections 
found in all flesh–the channeling 
wires and threads, vacuoles, granules, plasma and pods, purple veins, ascending 
boles and coral sapwood (sugar-
and light-filled), those common ligaments, filaments, fibers and canals.

Seminal to all kin also is the open 
mouth–in heart urchin and octopus belly, in catfish, moonfish, forest lily, and rugosa rose, in thirsty magpie, wailing cat cub, barker, yodeler, yawning coati.

And there is a pervasive clasping 
common to the clan–the hard nails
 of lichen and ivy sucker 
on the church wall, the bean tendril 
and the taproot, the bolted coupling 
of crane flies, the hold of the shearwater
 on its morning squid, guanine 
to cytosine, adenine to thymine,
 fingers around fingers, the grip
 of the voice on presence, the grasp 
of the self on place.

Remember the same hair on pygmy
 dormouse and yellow-necked caterpillar, 
covering red baboon, thistle seed 
and willow herb? Remember the similar
snorts of warthog, walrus, male moose
 and sumo wrestler? Remember the familiar 
whinny and shimmer found in river birches, bay mares and bullfrog tadpoles, in children playing at shoulder tag on a summer lawn?

The family–weavers, reachers, winders 
and connivers, pumpers, runners, air and bubble riders, rock-sitters, wave-gliders, wire-wobblers, soothers, flagellators—all
 brothers, sisters, all there is.

Name something else.”

Lichen and Moss

“the hard nails of lichen” and moss

If you are not familiar with the poetry of Pattiann Rogers, you’re in for a treat. Here is a poet who has beautifully captured the notion of Crosscutting Concepts; they run throughout “The Family Is All There Is.” The patterns of “open mouth” and “clasping.” The structure and function of “the channeling wires and threads.” The system of kinship among all living things … “the family is all there is.

Arguably the theme of this poem is “all things are connected.” And isn’t that, in essence, the great understanding that the NGSS Crosscutting Concepts lead us to? Don’t they guide and promote our ability to see those connections, those commonalities? And doesn’t Pattiann Rogers do the same in that poem, in the grand tradition of the Metaphysical Poets.

So, in case you haven’t crossed her path before, let me briefly introduce her to you and then to what I think is one of the major implications of her work for educators and specifically for those of us in STEM education.

A brief biography: Pattiann Rogers was born in 1940 in Joplin, Missouri. Her mother was a schoolteacher. Pattiann went to the University of Missouri where she met her future husband, John Robert Rogers, in French class. She completed her degree in English literature, and the couple married in 1960. While John completed his PhD in Physics, Pattiann worked as a kindergarten teacher. She and her husband had two sons, John and Arthur, and by the birth of their second son were living in Houston, where her husband did geophysical research for Texaco while pursuing postgraduate training in geology at the University of Houston. Meanwhile, Rogers devoted herself, during their early years, to raising the couple’s two sons, eventually enrolling in a graduate program in creative writing at the University of Houston and earning her MA in 1981, the same year she published her first book of poems, The Expectations of Light, which received an award from the Texas Institute of Letters and prompted critic Peter Stitt to comment on her “sophisticated incorporation of modern scientific thinking into poetry.”

Rogers’s eldest son John earned a PhD in physics at MIT and is now celebrated as one of the University of Illinois at Champagne-Urbana’s “star professors” and one of the leading material scientists in the world. In fall 2016, he will be leaving the U of I to become the Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering, Biomedical Engineering and Medicine in the Simpson Querrey Institute for BioNanotechnology, Northwestern’s newly endowed center for biointegrated electronics. He and his research team have developed a wireless antibiotic implant that dissolves after a patient’s treatment is complete. In 2013 the group developed a tattoo-like sensor that can measure brain waves, heartbeats, and the contraction of skeletal muscles.
That was a mouthful.

But I wanted to include it to suggest the way in which the arts and sciences can marry, can feed each other (read inspire), and basically operate as one family within the human intellect. Far from being the two separate cultures C. P. Snow described in 1959, they are, ideally and quite appropriately, helpmeets. Snow believed that Britain, his country, had privileged the humanities over the scientific and engineering education he felt necessary to manage the modern scientific world. We certainly don’t do that in today’s United States. In fact, we don’t seem to privilege either the Arts or the Sciences, if the time spent on those disciplines in our schools and if what is tested, i.e., valued, are any indication. But perhaps, united, both science and art stand a better chance.

Let’s take an excerpt from another of Pattiann Rogers’s poems, “How the Body in Motion Affects the Mind.”

“We are bound by the theorem of sockets and joints,
Totally united with contraction and release.
The idea of truth cannot be separated
From the action of the hand releasing
The stone at the precise apogee of the arm’s motion
Or from the spine’s flexibility easing
Through a wooden fence. The notion
Of the vast will not ignore the arm swinging
In motion from the shoulder or the fingers
Clasped together in alternation.

And when the infant, for the first time,
Turns his body over completely, think
What an enormous revelation in the brain
Must be forced, at that moment, to right itself.”

I can’t help but notice in this poem what we’ve come to call scientific thinking, the Wheel of Inquiry. When you reflect on the NGSS, specifically the eight Scientific and Engineering Practices, the observation, the awakened curiosity, the questioning, the developing of models, all come into play in the work of this poet and arguably that of artists everywhere. Artists too are observers, problem solvers, investigators of discrepant events, and communicators of what they learn from their explorations of the world.

It’s easy to see why Rogers “is known for verse that both embraces the natural world and unfolds the complexities of science.” Roald Hoffmann, Nobel laureate in chemistry said, “I’ve never seen nature observed as closely, nor transfigured by human language, as in Pattiann Rogers’ poetry.” If you want to further explore the work of Pattiann Rogers, a good place to start is to dive into Song of the World Becoming: New and Collected Poems 1891-2001(2001). Her poems are an education in ecology, astronomy, biology, and in the vocabulary of science and scientific observation. I also highly recommend her reflections on her writing in The Dream of the Marsh Hen: Writing as Reciprocal Creation (1999). Both books are seedbeds from which teachers can generate arts based and science connected activities for their students, by activating students’ curiosity and imagination. And to delve into the works of other poets who have taken science and math as their own fertile field, have a look at Verse and Universe: Poems about Science and Mathematics (1998). Pattiann Rogers is included in this anthology, and so is chemist Roald Hoffmann.

Image: J Brew via Flickr

Image: J Brew via Flickr (Creative Commons)

So just maybe the ultimate Crosscutting Concept is that science and art are fundamentally related, the thought processes of scientists and artists more akin than surface appearances would suggest. Part of our task then as teachers and as a society is to erase the artificial divide between the two and the notion that we have two competing cultures, as if there could possibly be a competition at that most fundamental of levels — the working of the human mind. And that would logically lead us to very thoughtfully tuck a capital A into STEM right after the E.

As Pattiann Rogers states in The Dream of the Marsh Wren. “It has seemed to me impossible to live in our world, to survive — the split, the rending being too great — if a union could not be found and created within these two ways of knowing, the artistic and the scientific, both so essential and so present in our lives. I believe that the union is there and only lacks expression to bring it into reality.”

~ Penny

To learn more about STEM Institute, click here.


Leave a comment

Filed under arts, book review, creativity, curiosity, NGSS, Pattiann Rogers, poetry, STEAM, STEM education, teacher resources, The Scientific Method, Uncategorized, Wheel of Inquiry

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s