Category Archives: innovation

Quick Read: How We’ll Live on Mars by Stephen L. Petranek

“Studying whether there’s life on Mars or studying how the universe began, there’s something magical about pushing back the frontiers of knowledge. That’s something that is almost part of being human, and I’m certain that will continue.” Sally Ride

“You need to live in a dome initially, but over time you could terraform Mars to look like Earth and eventually walk around outside without anything on… So it’s a fixer-upper of a planet. I would like to die on Mars, just not on impact.” Elon Musk

Mars

Following on the heels of the immensely popular film The Martian, our STEM Institute faculty is currently in planning mode for a new adventure — launching a STEM program at Illinois State University for a cohort of young Golden Apple Scholars, the teacher preparation arm of Golden Apple. The theme for the week of activities is “Mission to Mars,” and once the Scholars have experienced and reflected on the Mars mission-themed activities for themselves, they will be rolling out two summer camps for students in the area, one focused on students in 3rd through 5th grades and the other for students in 6th through 8th grade.

We are encouraging those students to apply by asking them to imagine themselves as part of the team of scientists and engineers that will launch the first successful manned mission to Mars in 2026. We tell them

“At the Mission to Mars ISU STEM camp, you will explore ways to get to Mars, land on Mars, live on Mars, study Mars, and return safely to earth.

During the camp you will get to…
• Launch rockets.
• Create a means to successfully land humans on Mars.
• Explore the planet, testing and analyzing the rocks, soil and atmosphere.
• Develop ways to grow food on Mars.
• Search for evidence of water on the Martian surface.
• Construct a settlement for you and your fellow space pioneers.
• Develop a way to safely return to and land on planet earth.

At the Mission to Mars ISU STEM camp, you will do all of these things so that you are ready to play a historic role in Man’s first visit to the mysterious red planet we call Mars.”

Imagine yourself as a 5th through 8th grader. Wouldn’t the prospect of participating in a Mission to Mars summer camp thrill you?

If you want to consider creating a similar experience for your own students, I have a quick read for you.

How We'll Live on Mars

How We’ll Live on Mars by Stephen L. Petranek is a 2015 TED Original publication. Weighing in at 77 succinct, information-packed pages, including 22 gorgeous color photographs of the surface of Mars, the rocketry, and the exploration devices we’ve used to explore it thus far, it’s a little gem of a book for launching your own planning for a unit about getting to and living on Mars. Petranek begins with a brief history of the idea of man traveling to and colonizing Mars, acquaints the reader with the private space race currently going on involving, among others, Elon Musk, the creator of the Tesla car, details the challenges rockets pose for engineers, and analyzes the economics of a mission to Mars, before delving into the prospect of actually living on the red planet. What will we do about water? How will we breathe? How will we feed ourselves? What clothing and shelter can we devise to protect ourselves in such a hostile environment?

Clearly we will have to change something if we are to view Mars as a long-term habitation for human beings. Chapter 7 “Making Mars into Earth’s Image” goes into various ways humanity might set about terraforming Mars to create a suitable home for humans. Also called planetary engineering or planetary ecosynthesis, terraforming was initially proposed by Carl Sagan in the journal Science in 1961. Students can learn a lot of science exploring the various scenarios scientists and engineers have proposed. But what if rather than changing Mars to be more like earth, we changed ourselves to be better able to survive on Mars? Petranek explores this intriguing possibility that could be achieved via gene manipulation.

Chapter 8 explores the ubiquitous WIIFM question or “What’s in it for me?” What’s in it for humanity to invest in establishing human settlements on Mars? The most obvious answer is that Mars could serve as Plan B for a species that has ruined its own home planet, providing an escape hatch should earth become less and less habitable. At least some of humanity would survive. But as it turns out, there’s a veritable fortune to be made in colonizing Mars and exploiting the natural resources contained in the asteroid belt that lies between Mars and Jupiter, which is much easier to access from Mars than it is from Earth.

On Our Way!

On Our Way!

The final chapter returns to a historical perspective, comparing the exploration and settlement of Mars to the most obvious analogy from Western history, that great period of exploration which opened the New World to European explorers and settlers. What an intriguing opportunity to connect social studies and science in any Mission to Mars unit you would design.

As our work on the Mission to Mars curriculum evolves, we’ll be sharing it on our Partners in Inquiry website. In the meantime, this quick read should set your own thinking in motion toward developing a Mission to Mars unit for the students you teach.

And here’s something for you to dream on and to spark your students’ imaginations and creativity. A NASA scientist recently announced that we could transport humans to Mars in a month. A month! And be sure to check out the images and videos of Mars that NASA has made available, paid for by our tax dollars and worth every penny!

Until next time …

~ Penny

You can learn more about Golden Apple STEM Institute here.

Advertisements

Leave a comment

Filed under book review, creativity, curiosity, engineering, innovation, Mars, teacher resources, TED, The Martian, Uncategorized

Golden Apple STEM Institute TED Playlist: 10 Inspiring Talks for Inquiry-Based STEM Teachers

If you’re a follower of TED talks you are probably already familiar with TED playlists, TED or curator created groupings of TED talks around a particular theme. You know the power of these collections to spark your thinking about a  topic. If you aren’t familiar with TED, the following short videos will provide you with an introduction to these inspiring and entertaining talks on the cutting edge of human understanding.

By the way, TED stands for Technology, Entertainment, and Design, but the talks are much more wide-ranging that those three words suggest, delving into science, mathematics, education, and numerous other fields. The talks themselves are given at an annual TED conference. This year’s TED conference was in Vancouver and just just concluded. Attending the conference is by application and invitation and costs $8,500, not including airfare, lodging and food. In the coming weeks, the talks from that conference will be posted online and are free. Cities around the world have created their own TED conferences called TEDex, and those talks are posted on the TED site as well.

STEM Institute has assembled the following ten TED talks that capture the spirit of inquiry, curiosity, and fun that are at the heart of our program. They suggest what we hope students will experience in their STEM classes.

 

Why we need the explorers

This talk could be subtitled “on the importance of curiosity driven science.”

 

Three rules to spark learning

A high school chemistry teacher shares insights he learned from his surgeon that changed how he practices the craft of teaching.

 

Hey science teachers – make it fun

Why textbook driven instruction isn’t the way to go — be playful and use storytelling to awaken your students’ interest.

 

Science is for everyone, kids included

This talk is on the importance of play; science as a way of being; children’s questioning; and experiments as play.

 

Math class needs a makeover

Although this talk is about high school math, the takeaways apply equally to elementary math and science – the importance to students of formulating the problems; here’s some great teaching advice to lead students to patient problem solving.

 

Hands-on science with squishy circuits

Make some homemade play dough for little kids to build circuits.

 

Kids can teach themselves

Sugata Mitra explores how you can indeed feel confident in turning over more responsibility for learning to kids themselves.

 

How I harnessed the wind

Inspiring talk by a young man from Malawi that could lead students to explore the maker movement, engineering, and the power of young people to make real world contributions; a good hook for a unit on energy or for Earth Day.

 

Biomimicry’s surprising lessons from nature’s engineers

Why immerse students in nature? This talk explores the intersection between science, design, and engineering.“Learning about the natural world is one thing; learning from the natural world, that’s the profound switch.”

 

Do schools kill creativity?

Saving the best for last, I close with the most popular TED talk of all time. It gets to the heart of what is wrong with most schools, the deadening impact they have on students’ creativity, creativity that is essential to success in the STEM fields.

 

Enjoy! And if you have a favorite TED talk or comments about any of these, please share in a comment below.

~Penny

You can learn more about STEM Institute here.

Leave a comment

Filed under children as engineers, children as scientists, creativity, curiosity, engineering, innovation, inquiry science, professional development, resources, science teaching, scientist, STEM education, teacher resources, TED, Uncategorized

From STEM to STEAM: Using Brain-Compatible Strategies to Integrate the Arts ~ A Review

Following on the last entry, today’s post will continue what will be a yearlong focus on evolution. No, not that evolution!

STEM Institute spends one day during Introduction to Inquiry on evolution as it refers to teaching. Our program has evolved, just as we have evolved as teachers in our thinking about and practice of teaching and as we encourage all teachers to evolve over the course of their teaching careers. But we are increasingly wondering if  our evolution as a provider of teacher professional development should include evolving from STEM to STEAM, infusing more arts into our program, or at least exploring that option.

What we don’t want to do is thoughtlessly tack on some art activities to reinforce science content … a poem here, a drawing there. Rather we want to investigate what deeply infusing the arts into the STEM program would do for kids. And what it would look like? What are the practical implications? What are the arguments for and against, and what are the implications for 21st century learning?

But let’s begin with why we might even consider such an evolution in a program that is already high quality and highly regarded by teachers. Why mess with success?

To help answer this question, let’s take a look at a book focused precisely on our theme. From STEM to STEAM: Using Brain-Compatible Strategies to Integrate the Arts by David A. Sousa and Tom Pilecki (Corwin, 2013) provides a combination of the grounding philosophy, historical perspective, and science to support such an evolution and the practical tools, strategies, and activities for teachers and principals to employ in carrying it out.

STEM to STEAM

STEM to STEAM: Using Brain-Compatible Strategies to Integrate the Arts

The first two chapters of From STEM to STEAM present the philosophical and scientific background for Sousa and Pilecki’s view that STEM ought to become STEAM. They see arts and science as complementary rather than competitive and situate that idea in history. The ancient Olympic games in Greece, for example, included competitions in the arts as well as in sports, with the arts being every bit as prestigious. And Renaissance artists like Leonardo da Vinci and Michelangelo Buonarroti “saw no boundaries between the arts and sciences.”

Citing research study after research study, the authors provide ample ammunition for educators looking to make a case for STEAM. The arts foster cognitive development in children, helping young minds develop creativity, problem solving, critical thinking, communications, self-direction, initiative, and collaboration. The arts evoke emotions, which enhances learning and fosters retention. And Sousa and Pilecki suggest novel reasons for integrating arts within a STEM curriculum, including the idea that “the arts introduce many more possibilities for novelty,” which, according to neuroscientists, is necessary to grabbing student attention, a necessary precursor to learning. Students like doing “something different,” and hearing their teacher announce “we’re going to be doing something different today” makes them sit up and take notice. The arts also lower stress levels making young minds more receptive to retaining new knowledge. Reducing stress is particularly important in these times of high stakes testing. The arts also make teaching more interesting and fun for teachers. Teachers benefit from novelty too. A bored teacher isn’t likely to excite a child to learn.

Sousa and Pilecki very much support the approach taken by STEM Institute in encouraging teachers to strive for many answers and to encourage divergent thinking. They observe that “the actual time that teachers devote to divergent thinking in STEM classes is often limited because the STEM areas – as currently taught in our schools – lend themselves so well to convergent thinking, and because testing STEM concepts is easier with close-ended questions that have only one correct answer. Yet this type of instruction may be extinguishing creativity in our students. Some researchers believe that by consistently reinforcing neural pathways with convergent thinking activities, we may be limiting the pathways that support creative and divergent thinking.” That gives one pause because, “the study of the arts not only allows students to develop skills that will improve the quality of their lives but also sustains the same creative base from which scientists and engineers seek to develop their innovations and breakthroughs of the future.” Citing research on musicians and London cabbies, the authors report that divergent thinking challenges the brain and in the process changes it for the better, actually enlarging parts of the brain essential to creativity — the corpus callosum, the hippocampus, and the frontal lobe. So absent ample opportunities for divergent thinking, that could result by adding arts, students are less likely to be able to make those future breakthroughs.

And all of the above seem to be excellent reasons to move from STEM to STEAM.

From STEM to STEAM includes lots of practical resources to help you get started on your evolutionary journey. One of my favorites is “Table 1.2: Practices and concepts from the K-12 National Research Council framework (precursor to the NGSS) and skills often acquired in arts-related instruction,” which could become your go to place for generating ideas about art activities that would address the NGSS Scientific and Engineering Practices and the Crosscutting Concepts. Another helpful table provides “comparisons of the traditional approach with an arts-integrated approach,” just to keep us honest.

Also useful are the sample arts integration lessons organized in grade level specific chapters “Chapter 4: Implementing Arts Integration, Grades K-4;” “Chapter 5: Implementing Arts Integration, Grades 5-8;” and “Chapter 6: Implementing Arts Integration, Grades 9-12.” Early childhood educators will welcome the developmentally appropriate recommendations and the research behind them in Chapter 4. However, all K-12 teachers will find the planning tools and templates in these chapters convenient and timesaving. These include Bloom’s Taxonomy Applications, Multiple Intelligences Applications, management planning, lesson plan formats, and a template for designing a STEAM unit across grade levels. Throughout the book the authors provide dozens of activities, and a final section lists STEAM resources (books, films, journals, organizations, and websites).

If you are looking to get your creative juices flowing, two particularly inspiring chapters are “STEAM Lesson Plan Appetizers in Science, Technology and Engineering” and “STEAM Lesson Plan Appetizers in Mathematics.” The authors define “appetizers” as the “beginning of your creative journey.” They are “meant to be the beginning of a complete lesson plan, something to make you want to dive into the ‘full-course’ of creating your own, tailor-made STEAM lesson plan.” They are designed to help you “incubate” your own lesson plan ideas into fully fledged lessons and units to excite and engage your students, and the authors include for each a curriculum objective, an artistic objective, and a social/emotional objective, as well as an assessment, materials, and multiple intelligences and Bloom’s levels addressed.

From STEM to STEAM is crammed with ideas, activities, and resources for teachers who want to infuse their STEM curricula with the arts. More importantly, the book provides the philosophical foundation and scientific research base for doing so — great information to help you make your case with colleagues, administrators, and parents. I can’t recommend the book highly enough. It is well worth your time and money, for the activities alone.

You might also find it interesting to read David Sousa and Tom Pilecki’s blog post, summarizing their position and challenging the supremacy of standardized testing in today’s schools.

A final note: While not every blog post over the coming year will focus on STEM to STEAM, there is, after all, climate change, and we also want to report on great teachers and schools where STEM is blossoming, you’ll find a lot of STEAM in this school year’s blog posts. I also really encourage you to weigh in by leaving comments. Are you intrigued by STEAM? Are you already doing it? What are the benefits? The challenges? What impact do you see on your students? What concerns do you have?

~ Penny

Just click on the link to learn more about Golden Apple’s STEM Institute.

Leave a comment

Filed under arts, book review, brain based research, brain compatible instruction, creativity, innovation, resources, STEAM, STEM education, teacher resources, Uncategorized

Ten Top Reasons to Move from STEM to STEAM

“The difference between science and the arts is not that they are different sides of the same coin … or even different parts of the same continuum, but rather, they are manifestations of the same thing. The arts and sciences are avatars of human creativity.” Mae Jemison (doctor, dancer, and the first African American woman in space)

More than a clever acronym that allows proponents to repurpose clichés like “get a full head of STEAM on” and “full STEAM ahead,” the evolution from STEM to STEAM, integrating science, technology, engineering, math (which do seem to fit together) with the Arts (which may seem like a stretch, given our notion that they represent “two cultures”) makes genuine sense if we want to educate students to their full potential and secure a better economic future for our country.

There are numerous reasons to support moving from STEM to STEAM, but with a nod to former TV talk show host David Letterman and his popular Top Ten lists, here are some of the reasons that persuade me.

10. STEAM fosters teamwork and collaboration between teachers in a school (a good thing) and the transfer of knowledge between disciplines. When a school develops a STEAM focus, it actively restores art and science to a place of importance within the life of the school.

9. STEM + Arts engages a wider range of students. The girl who loves math and discovers the powerful connection between math and music or the boy who grows to enjoy science and gains confidence to engage in it through drawing, his preferred way of learning, are both better served by STEAM. According to artist and educator Ruth Catchen, “the arts are a great learning tool and can serve as an on-ramp to STEM for underrepresented students.”

8. With the challenge of translating scientific, mathematical, technological, and engineering ideas and content into artistic products, STEAM increases the opportunities for problem solving.

Comparative Meshes, Stephen Cartwright (intersecting data sculpture), Dublin Science Gallery, Lifelogging

Comparative Meshes, Stephen Cartwright (intersecting data sculpture), Dublin Science Gallery, Lifelogging

7. STEAM allows teachers to assess student understanding of complex ideas through the artistic products they produce. Translating science and math concepts into art requires understanding the science and math. Research indicates that it also enhances retention.

6. STEM and the Arts require communication skills to share information with other practitioners and with the public. By communicating scientific ideas, artists can help everyone, even non-scientists, better understand them, and that would include the students themselves.

5. Observation is a key skill of both scientists and artists, and learning how to look is something art teachers regularly teach students to do. Students can then draw to record their observations of the natural world, to capture their understanding of a science concept or to illustrate how they would solve an engineering challenge. In fact, in many STEM classrooms, students are already doing these things, so the distance to STEAM is not far at all.

4. The arts can be a powerful means to spark emotion, adding an important, and sometimes missing, element to STEM. Through art, STEM content can become more personal, more meaningful, more memorable, more engaging, and more fun for students, while providing them opportunities for self-expression.

3. As teachers, we strive to create lessons that move students to higher levels on Bloom’s Taxonomy, encouraging them to develop more advanced intellectual skills. STEAM can help us get there. Creativity sits at the tip of Bloom’s pyramid. Verbs like “design,” “build,” “construct,” “plan,” “produce,” “devise,” and “invent” can generate thinking about how scientific information or data can be represented. Sir Ken Robinson defines creativity as “the process of having original ideas that have value” and suggests it “more often than not comes about through the interaction of different disciplinary ways of seeing things,” for example, STEM + Arts.

2. At the conceptual level, both scientists and artists go through the same processes in order to solve problems. It’s no surprise then that some of our greatest thinkers and innovators have been STEAM specialists, long before the acronym. Think Leonardo da Vinci and Albert Einstein. And design thinking, which makes the built world more engaging, aesthetically pleasing, and functional, combines the best of art, technology, and engineering. Think Steve Jobs and Sir James Dyson.

STEAM Specialists

STEAM Specialists

Therefore, adding the Arts to STEM makes it more likely that student creativity will be kicked up another notch … or two or three … allowing the United States to foster the creativity and innovation that will create a strong economy in the 21st century.

1. STEAM gets us closer to reality, to a world that isn’t divided into discrete disciplines, to real world experiences and applications, and to a future that values the importance of innovation and creativity enough to provide all students with opportunities to develop their innate creativity and their ability to find innovative solutions to the problems that face humanity. Art and science can become bridges to each other, and STEAM can be the bridge to a brighter future for us all.

Surely there are other reasons, and I invite you to offer them in comments. There are also challenges to moving from STEM to STEAM as well as counter arguments against doing so, both of which I’ll explore in a future post. In the meantime, you might want to do a little exploring on your own by checking out the articles below.

~ Penny

To get started on the journey from STEM to STEAM, please see the resources compiled by Edutopia.

And if you want to read more about the topic, I invite you to take a look at the following articles:

STEM vs. STEAM: Do the Arts Belong?

STEM vs. STEAM: Why the A Makes All the Difference

A Young Picasso or Beethoven Could Be the Next Edison

STEAM – Not STEM Whitepaper

Experts Make the Case for Adding Arts to STEM

You can learn more about STEM Institute here.

1 Comment

Filed under arts, creativity, innovation, STEAM, STEM education, Uncategorized